When US government scientists began sampling the air from a tower north of Denver, Colorado, they expected urban smog — but not strong whiffs of what looked like natural gas. They eventually linked the mysterious pollution to a nearby natural-gas field, and their investigation has now produced the first hard evidence that the cleanest-burning fossil fuel might not be much better than coal when it comes to climate change.
Led by researchers at the National Oceanic and Atmospheric Administration (NOAA) and the University of Colorado, Boulder, the study estimates that natural-gas producers in an area known as the Denver-Julesburg Basin are losing about 4% of their gas to the atmosphere — not including additional losses in the pipeline and distribution system. This is more than double the official inventory, but roughly in line with estimates made in 2011 that have been challenged by industry. And because methane is some 25 times more efficient than carbon dioxide at trapping heat in the atmosphere, releases of that magnitude could effectively offset the environmental edge that natural gas is said to enjoy over other fossil fuels.
Here is some more background detail.
The first clues appeared in 2007, when NOAA researchers noticed occasional plumes of pollutants including methane, butane and propane in air samples taken from a 300-metre-high atmospheric monitoring tower north of Denver. The NOAA researchers worked out the general direction that the pollution was coming from by monitoring winds, and in 2008, the team took advantage of new equipment and drove around the region, sampling the air in real time. Their readings led them to the Denver-Julesburg Basin, where more than 20,000 oil and gas wells have been drilled during the past four decades.
Most of the wells in the basin are drilled into 'tight sand' formations that require the same fracking technology being used in shale formations. This process involves injecting a slurry of water, chemicals and sand into wells at high pressure to fracture the rock and create veins that can carry trapped gas to the well. Afterwards, companies need to pump out the fracking fluids, releasing bubbles of dissolved gas as well as burps of early gas production. Companies typically vent these early gases into the atmosphere for up to a month or more until the well hits its full stride, at which point it is hooked up to a pipeline.
The team analysed the ratios of various pollutants in the air samples and then tied that chemical fingerprint back to emissions from gas-storage tanks built to hold liquid petroleum gases before shipment. In doing so, they were able to work out the local emissions that would be necessary to explain the concentrations that they were seeing in the atmosphere. Some of the emissions come from the storage tanks, says Pétron, "but a big part of it is just raw gas that is leaking from the infrastructure". Their range of 2.3–7.7% loss, with a best guess of 4%, is slightly higher than Cornell's estimate of 2.2–3.8% for shale-gas drilling and production. It is also higher than calculations by the EPA, which revised its methodology last year and roughly doubled the official US inventory of emissions from the natural-gas industry over the past decade. Howarth says the EPA methodology translates to a 2.8% loss.
The Cornell group had estimated that 1.9% of the gas produced over the lifetime of a typical shale-gas well escapes through fracking and well completion alone. NOAA's study doesn't differentiate between gas from fracking and leaks from any other point in the production process, but Pétron says that fracking clearly contributes to some of the gas her team measured.
Capturing and storing gases that are being vented during the fracking process is feasible, but industry says that these measures are too costly to adopt. An EPA rule that is due out as early as April would promote such changes by regulating emissions from the gas fields.
http://bit.ly/z1ULCB
No comments:
Post a Comment